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A paper I presented six years ago 
at a meeting sponsored by the New York 
Academy of Sciences sought "to exhibit 
the classical method of least squares 
without recourse to the conventional 
summary normal equations" [1]. It 
emphasized two procedures that explic- 
itly introduce the n unknown residuals 
into the n observation equations. 
According to one of these procedures, 
the rectangular n x m observation 
matrix is expanded by a simple rule 
into a much larger invertible square 
matrix. A supermatrix system equiva- 
lent to conventional normal equations 
is immediately obtained, and it becomes 
possible to delegate all arithmetic 
processing to computer specialists. 
The second procedure is to set up 
"normal identities" in an obvious man- 
ner and then to eliminate certain 
summary terms that contain residuals 
and that an adjustment process might 
reasonably be expected to reduce to 
zero. The result is a conventional 
system of normal equations or something 
very similar to it -- plus some foot- 
note information on the minimum value 
of the sum of squared residuals. 
Having already explored my supermatrix 
approach in some degree [2], I return 
at this time to my normal- identity 
approach. 

Let us consider the familiar 
least- squares case of fitting the line 
y = a + bx with only the yi subject to 

error. Here, the number of unknown 
constants is m = 2 and the number of 
observations is n. For simplicity, we 
assume that the observations have equal 
weight. 

Actually, each observation equa- 
tion is an identity containing an 
additional term, the variable residual 
r.. Explicitly introducing this term, 

we write y = a + bxi + ri. Since 

there are n observations, we have n 
residuals. 

We now proceed to develop normal 
identities from the observation iden- 
tities. We multiply each observation 
identity by the coefficient of a (i.e., 
by 1) and sum to obtain the first 
normal identity. Next, we multiply 
each observation identity by the co- 
efficient of b by and sum 
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to obtain the second normal identity. 
Finally, we multiply each observation 
identity by ri and sum to obtain the 

third normal identity, 

The resulting system looks like 
this: 

= na + b1x +' .r 

a2x + bFx2 + 

fry = + + Zr2 

The determinant of the right -hand side 
is axisymmetric. The unknowns include 
a, b, and the terms in r. 

How may this system be solved? 
One obvious scheme is to assuine 

= O and rxr = O and restrict 
attention to the first two lines, since 
only two unknowns, a and b, really need 
to be found. The third line is redun- 
dant for solution, but it states a 
consistency condition, a necessary 
implication of the adjustment process. 

Our two assumptions, it might be 
noted, tell us exactly the same thing 
that the two normal equations do. The 
assumptions tell us with reference to 
residuals what the normal equations 
tell us with reference to the unknowns 
of primary interest. 

The third line, which simply 

states that fry = fr2, is a mathemati- 
cal footnote. It tells us what our 
assumptions mean with respect to the 
minimum value of the sum of squared 
residuals. Indeed, it tells us what 
we mean by "least squares" in this case. 
If this information is deemed excep- 
tionable, if this implication offends 
common sense or some prior principle, 
the process should be reconsidered or 
different sums should be eliminated. 

The normal identity approach makes 
it clear that the simple condition 
Zr = 0 arises in least -squares adjust- 
ment only when a free constant (such as 
a) exists. For any other linear model 
(e.g., the one used by Gauss in his 
Theoria Motu to illustrate the adjust- 
ment process), the residuals always 
appear with unequal weights in the 
normal identities. Hence, in such 
instances, only sums of weighted 
residuals may be set equal to zero -- 
even though the observations themselves 
are unweighted. Furthermore, in the 
absence of a free constant, a fitted 
line cannot pass through the point of 
unweighted means of the observed values. 



Much more complicated cases of 
curve -fitting may also be investigated 
with the aid of normal identities. 
Let us consider briefly the case in 
which both variables, the yi and the xi, 

are subject to error. This problem has 
attracted the attention of many statis- 
ticians over a long span of time. A 
paper published in 1959 provides an 
impressive bibliography -- 53 items 
appropriately extending from A (Adcock, 
1878) to Z (Zucker, 1947). This bibli- 
ography, however, must still be far 
from exhaustive for the period covered 
[3] 

We again start with y. = a + b. 
i z 

and do not weight the observations. 
Inserting si for the residual corres- 

sponding to yi and inserting ti for 

the residual corresponding to x,, we 

obtain yi + si = a + b(xi + ti) 
= 

a + bxi + bti as the prototype observa- 

tion identity. 

This time, we obtain five normal 
identities as we subject the observa- 
tion identities to multiplication, in 
turn, by 1, x si, and ti and sum 

the results. The whole system looks 
like this: 

,Z y + is = na + bZx + bit 

lxy + ixs f aIx + bix2 + blxt 

Zy2 + 1Eys = any + bZyx + btyt 

2.sy + 2s2 = aEs + brsx + bEst 

Zty + E.ts = alt + bZtx + bft2 

What assumptions could we reason- 
ably make in order to solve this system? 
The sums of unweighted residuals pre- 
sumably should be made equal to zero: 
Es = Et = 0. We may also suppose the 
independence of: (1) the two sets of 
residuals and (2) the observed values 
of one variable and the residuals 
associated with the other. Thus, we 
also assume E xs = Eyt = 1Lst = O. 

After making these simplifications, 
we are left with this pattern of 
equations: 

fy = na + blx 

Exy = aIx + bEx2 + bixt 

Ey2+ lys = afy + bTyx 

Isy + Is2 = O 

0 = bExt + bZt2 
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The fourth and fifth lines tell us 
what the adjustment process, if it 
is accepted, means for the values of 

Ls2 and Et2. Unless some relation- 
ship between these sums of squared 
residuals is posited, we cannot solve 
the system, since we still have too 
many unknowns. 

If we assume that ßs2 = kEt2, 
we arrive at the quadratic equation 
that is often shown in the literature 
as the key to complete solution. This 
additional assumption entails Esy = 

Zxt. Substituting in the first three 
summary equations and simplifying, 
we obtain this expression: 

b2Mxy + b(kMx - My) - kMxy = 0, 

where Mxy, Mx, and My refer to the 

moments appearing in the familiar 
formulas for the correlation coeffi- 
cient and for the variances of x and 
y. The quadratic expression may be 
solved readily for b; and, giving 
different values to the parameter k, 

we obtain various special cases of 
interest [4]. If we set k = 1, we 
have the well -known case of orthogonal 
regression, which is usually discussed 
in terms of polar coordinates and 
solved with respect to the tangent of 
an angle [5]. 

Obviously, the normal- identity 
approach is versatile, and it should 
have both pedagogic and theoretical 
interest. It seems to treat the ad- 
justment process as a deterministic, 
rather than as a probabilistic, one; 
but a transition from "mathematics" 
to "statistics" is made via theassump- 
tions. Since the assumptions refer 
to summary terms involving residuals, 
a range of choices may be explored 
advantageously when more than one 
variable is subject to error. The 
"errors -in- variables" model, moreover, 
is nowadays contrasted in econometrics 
with the "errors -in- equations" model, 
and the normal -identity tool ought to 
be useful in the investigations 
pursued [6]. 
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